Change of Basis \& Coordinates

41 The mythical town of Oronto is not aligned with the usual compass directions. The streets are laid out as follows:

Instead, every street is parallel to the vector $\vec{d}_{1}=\frac{1}{5}\left[\begin{array}{c}4 \text { east } \\ 3 \text { north }\end{array}\right]$ or $\vec{d}_{2}=\frac{1}{5}\left[\begin{array}{c}-3 \text { east } \\ 4 \text { north }\end{array}\right]$. The center of town is City Hall at $\overrightarrow{0}=\left[\begin{array}{c}0 \text { east } \\ 0 \text { north }\end{array}\right]$.
Locations in Oronto are typically specified in street coordinates. That is, as a pair (a, b) where a is how far you walk along streets in the \vec{d}_{1} direction and b is how far you walk in the \vec{d}_{2} direction, provided you start at city hall.
41.1 The points $A=(2,1)$ and $B=(3,-1)$ are given in street coordinates. Find their east-north coordinates.
41.2 The points $X=(4,3)$ and $Y=(1,7)$ are given in east-north coordinates. Find their street coordinates.
41.3 Define $\vec{e}_{1}=\left[\begin{array}{c}1 \text { east } \\ 0 \text { north }\end{array}\right]$ and $\vec{e}_{2}=\left[\begin{array}{c}0 \text { east } \\ 1 \text { north }\end{array}\right]$. Does $\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}\right\}=\operatorname{span}\left\{\vec{d}_{1}, \vec{d}_{2}\right\}$?
41.4 Notice that $Y=5 \vec{d}_{1}+5 \vec{d}_{2}=\vec{e}_{1}+7 \vec{e}_{2}$. Is the point Y better represented by the pair $(5,5)$ or by the pair (1, 7)? Explain.

Representation in a Basis

Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for a subspace V and let $\vec{v} \in V$. The representation of \vec{v} in the \mathcal{B} basis, notated $[\vec{v}]_{\mathcal{B}}$, is the column matrix

$$
[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ uniquely satisfy $\vec{v}=\alpha_{1} \vec{b}_{1}+\cdots+\alpha_{n} \vec{b}_{n}$.
Conversely,

$$
\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{\mathcal{B}}=\alpha_{1} \vec{b}_{1}+\cdots+\alpha_{n} \vec{b}_{n}
$$

is notation for the linear combination of $\vec{b}_{1}, \ldots, \vec{b}_{n}$ with coefficients $\alpha_{1}, \ldots, \alpha_{n}$.

Let $\mathcal{E}=\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ be the standard basis for \mathbb{R}^{2} and let $\mathcal{C}=\left\{\vec{c}_{1}, \vec{c}_{2}\right\}$ where $\vec{c}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]_{\mathcal{E}}$ and $\vec{c}_{2}=\left[\begin{array}{l}5 \\ 3\end{array}\right]_{\mathcal{E}}$ be another basis for \mathbb{R}^{2}.
42.1 Express \vec{c}_{1} and \vec{c}_{2} as a linear combination of \vec{e}_{1} and \vec{e}_{2}.
42.2 Express \vec{e}_{1} and \vec{e}_{2} as a linear combination of \vec{c}_{1} and \vec{c}_{2}.
42.3 Let $\vec{v}=2 \vec{e}_{1}+2 \vec{e}_{2}$. Find $[\vec{v}]_{\mathcal{E}}$ and $[\vec{v}]_{\mathcal{C}}$.
42.4 Can you find a matrix X so that $X[\vec{w}]_{\mathcal{C}}=[\vec{w}]_{\mathcal{E}}$ for any \vec{w} ?
42.5 Can you find a matrix Y so that $Y[\vec{w}]_{\mathcal{E}}=[\vec{w}]_{\mathcal{C}}$ for any \vec{w} ?
42.6 What is $Y X$?

